12.8 Deadlock and Its Resolution 601

Figure 12.23 Example of wait-die deadlock prevention scheme.

Wait-Die

One solution in a case of contention for a data-item is as follows:

® If the requesting transaction is older than the transaction that nolds the lock on -
the requested data-item, the requesting transaction is allowed to wait.

® If the requesting transaction is younger than the transaction that holds the lock
on the requested data-item, the requesting transaction is aborted and rolled
back.

This is called the wait-die scheme of deadlock prevention.

If concurrent transactions Tsg, T37, and Tg (having timestamp values of tsq, t37,
and ty5, respectively, with t3s < t37 < t3g) have at some instance a wait-for graph, as
shown in Figure 12.23, then transaction T3¢ would be allowed to wait, but trans-
action T3 would be aborted and rolled back.

/
Wound-Wait

An opposite approach to the wait-die scheme is called the wound-wait scheme. Here
the decision whether to wait or abort is as follows:

® If a younger transaction holds a data-item requested by an older one, the
younger transaction is the one that would be aborted and rolled back (the
younger transaction is wounded by the older transaction and dies!).

e If a younger transaction requests a data-item held by an older transaction, the
younger transaction is allowed to wait.

For the request shown in Figure 12.24, where transaction Tig has a smaller
timestamp value than transaction T4, the younger transaction T, would be aborted
and rolled back, thus freeing the data-item locked by it to be used by transaction Tso.

For the request shown in Figure 12.25, where transaction Ty, has a smaller
timestamp value than transaction T4, the younger transaction T, is allowed to wait
for the completion.of the older transaction T,. :

We observe that in neither the wait-die scheme nor the wound-wait scheme is it
required to abort and roll back an older transaction. In this way the older transaction

Figure 12.24 Example of wounding request.

Chapter 12 Concurrency Management

cution schedule. If the precedence graph is acyclic, the schedule is serializable,
which means that the database will have the same state at the end of the schedule as
some serial execution of the transactions.

The concurrency control scheme . ensures that the schedule that can be produced
by a set of concurrent transactions will be serializable. One of two approaches is
usually used to ensure serializability: delaying one or more contending transactions,
or aborting and restarting one or more of the contending transactions. The locking
protocol uses the former approach. Timestamp-based ordering, optimistic scheduling,
and the multiversion technique of concurrency control use the latter.

In the locking protocol, before a transaction can access a data-item, it is required
to lock the data-item in an appropriate mode. It releases the lock on the data-item
once it no longer needs it. In the locking scheme, the two-phase locking protocol is
usually used. The principle characteristic of the two-phase locking protocol is that all
locks are acquired before a transaction starts releasing any locks. This ensures seri-
alizability; however, deadlock is possible.

With hierarchically structured storage of the database and its data-ltems a dif-
ferent granularity of locking is implied. Thus, locking an item may imply locking all
items that are its descendants. To enhance the performance of a system with hierar-
chically structured data, additional modes of locking are introduced. Thus, in addi-
tion to read and write locks, intention locks are required. The locking protocol is
modified to require a root-to-leaf direction of lock requests and the reverse direction
of lock releases.

In timestamp-based ordering. each transaction is assigned an unique identifier,
which is usually based on the system clock. This identifier is called a timestamp and
the value of the time-stamp is used to schedule contending transactions. The rule is
to ensure that a transaction with a smaller timestamp (older) is effectively executed
before a larger (younger) transaction. Any variation from this rule is corrected by
aborting a transaction, rolling back any modifications made by it, and starting it
again.

In optimistic scheduling, the puitosophy js that a contention between trans-
actions will be very unlikely and any data-item used by a transaction is not likely to
be used for modification by any other transaction. This assumption is valid for trans-
actions that only read the data-item. If this assumption is found to be invalid for a
given transaction, the transaction is aborted and rolled back.

In the multiversion technique, data is never written over; rather, whenever the
value of a data-item is modified, a new version of the data-item is created. The result
is that the history of the evolution of a data-item is maintained. A transaction is
assigned an unique timestamp and is directed to read the appropriate version of a
data-item. The write operation of a transaction, such as T, could cause a new version
of the data-item to be generated. However, in case another transaction has already
produced a new version of the data-item based on the version used by transaction T,
an attempt to write a modified value for the data-item by transaction T causes trans-
action T to be aborted, rolled back, and restarted as a new and younger transaction.

Deadlock is a situation that arises when data-items are locked in different order
by different transactions. A deadlock situation exists when there is a circular chain
of transactions, each transaction in the chain waiting for a data-item already locked
by the next transaction in the chain. Deadlock situations can be either avoided or
detected and recovered from. One method of avoiding deadlock is to ask for all data-
items at one time. An alternative is to assign a rank to each data-item and request

12.10 Summary 605

locks for data-items in a given order. A third technique depends on seiectively abort-
ing some transactions and allowing others to wait. The selection 1s based on the
timestamp of the contending transactions, and the decision as to which transactions
to abort and which to allow to wait is determined according to the preemptive pro-
tocol being used. The wait-die and the wound-wait are two such preemptive proto-
cols.

Deadlock detection depends on detecting the existence of a circular chain of
transactions and then aborting or rolling back one transaction at a time until no fur-
ther deadlocks are present. The wait-for graph is generated periodically by the system
to enable it to detect a deadlock.

starvation

lock manager write timestamp
livelock exclusive lock read timestamp
schedule shared lock cascading rollback
lost update two-phase locking optimistic scheduling
inconsistent read growing phase read phase
phantom phenomenon contracting phase validation phase
serial execution granularity write phase
serializable schedule intention mode multiversion
precedence graph intention share mode " time-domain addressing
acyclic graph intention exclusive mode relative-most-recent version
cyclic graph share and intention exclusive wait-for graph
read-before-write protocol mode wait-die
concurrency control tree-locking protocol wound-wait
lock directed acyclic graph (DAG)
locking timestamp ordering
12.1 Consider two transactions as follows:
Transaction 1: Fac_Salary;, := 1.1 * Fac_Salary; + 1025.00
N
‘I'ransaction 2: Average_Fac_Salary : = zl Fac_Salary/N

What precaution, if any, would you suggest if these were to run concurrently? Write a

pseudocode program for these transactions using an appropriate scheme to avoid undesirable

results. .

12.2 Consider that the adjustment of salary of the faculty members is done as follows, where Fac_

Salary; represents the salary of the ith faculty member:
Transaction 1: Fac_Salary; : = Fac_Salary, + 1025
Transaction 2: Fac_Salary; : = Fac_Salary; * 1.1
What precaution, if any, would you suggest if these were to run concurrently? Write a

pseudocode program for these transactions using an appropriate scheme to avoid undesirable
results

Chapter 12 Concurrency Management

12.3

12.4
12.8%

12.6

12.7

128

129

Consider the schedule of Figure 12.8a. What is the value of A and B, if fi(A) is A+ 10,
fo(B)is B * 1.2, fy(B) is B = 20, and fy(A) is A * 1.2? Assume that the initial values of A
and B are 1000 and 200, respectively.

Repeat Exercise 12.3 for the schedule of Figure 12.9a.

Consider the transactions of Figure 12.21. Rewrite the transactions using the two-phase
protocol and produce a schedule that is serializable.

Write an algorithm to find a cycle in a precedence graph. (Hint: Use an approach similar to
that of algorithm 12.1)

Consider the transactions of Figure 12.21 and the schedule ot rigure I. What would happen
at step 5 if t; > t,? Complete the schedule after step 5 and give the values for A and B
after each step. Assume that the initial values are A: {400, W,, R} and B: {500, Wy, R}.

Given the following schedule of Figure M, in a system where timestamp ordering is used,
suppose transactions T,, and Ty, had been assigned timestamps t,, and t,; respectively and
Sum is a local variable. Any value read in from the database is copied into local variables
with the same names as the corresponding database items. The database items are only
changed with a write statement. If initially A: {400, W,, R,} and B: {500, Wy, R}, indicate
their values after steps 3, 5, 7, 8, 12 and 14.

Figure M Schedule for Exercise 12.8.
Step Schedule Transaction T, Transaction T,
1 Sum := 0 Sum := 0
2 Sum := 0 Sum := 0
3 Read(A) Read(A)
4 A:=A - 100 A:=A-100
5 Read(A) Read(A)
6 Sum := Sum + A Sum := Sum + A
7 Write(A) Write(A)
8 Read(B) Read(B)
9 Sum := Sum + B Sum := Sum + B
10 Show(Sum) Show(Sum)
11 Sum .= Sum + A Sum .= Sum + A
12 Read(B) Read(B)
13 B:=B + 100 B:=B + 100
14 Write(B) Write(B)
15 Sum := Sum + B Sum := Sum + B
16 Show(Sum) Show(Sum)

We have three transactions, Ta, 1,5, and Ty, with timestamp values of t,4, t;5, and ty,
respectively (ts < tzs < ty6). The schedule for the concurrent execution of these transactions
is given in Figure N. Assuming that initially A: a, W,, R, and B: b, W}, R, and C: ¢, W,
R., show these values after each step if the timestamp-ordering scheme for concurrency
control is used.

12.10 Summary. - 607

Figure N Schedule for Exercise 12.9.

Step Schedule Transaction T4 Transaction T,s Transaction T,¢

1 Read(A) Read(A)

2 A:=fi(A) A:=f(A)

3 Read(B)

4 Write(A) Write(A)

5 Read(C) Read(C)

6 C:=f(C) C:= f(C)
7 Read(C)

8 Write(C) Write©) .
9 Read(B) Read(B)
10 B := fy(B)
11 Write(B)

12 B:=f(B) B:=fyB)
13 WriteB) Write(B)

12.10 Suppose we want to add a record occurrence to record type R, (Figure 12.19) which uses
indexes I, and I,, for direct access to the records. Give the sequence of locking to perform
this operation. -

12.1% Algorithm 12.2 is inefficient because some transactions are processed many times. Give a
modification to the algorithm to avoid this inefficiency.

42.12 In an adaptive deadlock detection scheme, why is it necessary tc choose an upper and lower
limit for the frequency of running the deadlock detection algorithm?

12.13 In the concurrency control scheme based on timestamp ordering, we have assumed that the
timestamp value is'based on a systemwide clock. Instead of using such a timestamp to
determine the grdering, suppose a pseudorandom number generator was used. Show how you
would modify the concept of older and younger transactions with this modification and give
the modified wait-die and wound-wait protocols., ' ‘

Bibliographic Notes

Gray in (Gray 79) presents comprehensive operating 'systzmv requirements for a database sys-
tem. The transaction concept and its limitations are discussed in (Gray 81). The serializability
concept, the two-phase locking protocol, and its correctness is due to the early work by Es-
waran et al. (Eswa 79) in connection with System R. The extension of the serializability test
for repd-only and write-only cases are discussed in (Papa 79). The algorithm for this case is
developed in (Bem 79), and the text by Ullmann (Ulim 82) also treats this topic. Locking
schemes, multigranularity, and intention-locking extensions are discussed in (Gray 75). Exten-
sions to lock modes and deadlock avoidance are discussed in (Kort 82) and (Kon 83).

(Reed 79) presented the carliest known multiversion timestamping algorithm. The use o1
a pscudotimestamp was discussed in (Reed 83) and (Svob 80). It is shown in (Bern 83) that
any schedule generated according to the timestamp concurrency control algorithm requirements
is serializable, and the result obtained by a set of concurrent transactions is the same as ob-
tained by some serial execution of the set of transactions with a single version of the data-

608 Chapter 12 Concurrency Management

items. The reader interested in the multiversion concurrency control algorithms based on lock-
ing is referred to (Baye 80) and (Ster 81). The extension of the locking scheme and locking
with timegtamp ordering (combination scheme) is discussed in (Berm 83). The combination
scheme was discussed in (Chan R2). The tree-locking protocol for a database whos= storage is
tree structured is discussed in (Silb 80) and this protocol is generalized to the read-only and
write-only locks in (Kade 80). (Bern 80) presents a number of different distributed database
concurrency control schemes based on timestamping.

An optimistic method for concurrency control is presented in (Kung 81). (Rose 79) pro-
posed the wait-die and wound-wait transaction retry schemes to avoid deadlocks in a distrib-
uted database system, although these schemes are applicable to a centralized database system
as well.

The deadlock problem is surveyed in (Coff 71) and (Holt 72). (Islo 80) discusses the
general deadlock problem and examines the problems unique to database systems, both cen-
tralized and distributed.

Bibliography

(Bass 88) M. A. Bassiouni, ‘‘Singlé-Site and Distributed Optimistic Protocols for Concurrency Control,”” IEEE-
SE SE 14 (8), August 1988, pp. 1071-1080.

(Baye 80) H. Bayer, H. Heller, & A. Reiser, *‘Parallelism and Recovery in Database Systems,”” ACM TODS
5(4), June 1980, pp. 139-156.

(Bemn 79) P. A. Bemstein, D. W. Shipman, & W. S. Wong, *‘Formal Aspects of Serializability in Database
Concurrency Control,”* IEEE-SE SE 5 (3), May 1979, pp. 203-215.

(Bern 80) P. A. Bemstein, & N. Goodman, *‘Timestamp-Based Algorithms for Concurrency Control in
Distributed Systcms," Proc. 6th International Conf. on Very Large Data Bases, Montreal,
October 1980, pp. 285-300

(Bern 83) P. A. Bemstein, & N. Goodman, “Multiversioﬁ Concurrency Control—Theory and Algorithms,”’
ACM TODS 8(4), Dec. 1983, pp. 465-483.

(Caso 81) M. A. Casonova, “‘The Concurrency Control Problem of Database Systems,” Lecture Notes in
Computer Science, vol. 116. New York: Springer-Verlag, 1981.

(Chan 82) A. Chan, S. Fox. W. T. K. Lin, A. Nori, & D. R. Ries, *“The Implementation of an Integrated

Concurrency Control and Recovery Scheme,’* Proc. ACM/SIGMOD Conf. on Management
of Data, Orlando, Florida, June 1982, pp. 184-191.

(Coff 71) E. G. Coffman, M. J. Elphick, & A. Shoshani, *‘System Deadlocks ** ACM Computing Surveys 3(2),
June 1971, pp. 67-88.

(Eswa 79) K. P. Eswaran, J. N. Gray, R. A. Lori¢, & 1. L. Traiger, ““The Notion of Consistency and Predicate
Locks in a Database System,”” CACM, 19(11), November 1979, pp. 624-633.

(Gray75)1 N. Gray, R. A. Lorie, & G. R. Putzolu, * GnnulamyoflnchmaShmeleaBm Proc. of
the VLDB, 1975, pp. 428-451.

(Gray 79) J. N. Gray, *‘Notes on Data Base Operating Systems,’ in R. Bayer, R. M. Graham, & G.
Seegmuller, eds., Operating Systems: An Advanced Course. Betlin: Springer-Veriag, 1979.

(Gray 81) J. N. Gray, *‘The Transaction Concept: \muesmdl.umum Pmcofllw?thVLDBCMm.
1981, pp. 144154,

(Holt 72) R. C. Holt, “‘Some Deadlock Properties of Computer Systems,”” ACM Computing Surveys 4(3),
September 1972, pp. 179-196.

(Hunt 79) H. B. Hunt, & D. J. Rosenkrantz, *“The Complexity of Testing Predicate Locks,” Proc. ACM-
SIGMOD 1979 Intemational Conference on Management.of Data, May|1979, pp. 127-133.

12.10 Summary 609

(Islo 80) S. S. Isloor, & T. A. Marsland, ‘“The Deadiock Problem: An Overview,”* Computer 13(9), September
1980, pp. 58-78. g

(Kade 80) Z. Kadem, & A. Silberschatz, ‘‘Non-Two Phase Locking Protocols with Shared and Exclusive-
Locks,’’ Proc. 6th International Conf. on Very Large Data Bases, Montreal, October 1980, .
pp. 309-320.

(Kort 82) H. F. Korth, ‘‘Deadlock Freedom Using Edge Locks,”” ACM TODS 7(4), December 1982, pp. 632~
652.

(Kort 83) H. F. Korth, ‘‘Locking Primitives in a Database System,”” ACM JACM 30(1), January 1983, pp. 55~
9. -

(Kung 79) H. T. Kung, & C. H. Papadimitriou, ‘‘An Optimality Theory of Concurrency Control for
Databases,’’ Proc. ACM-SIGMOD 1979 International Conference on Management of Data,
May 1979, pp. 116-126.

(Kung 81) H. T. Kung, & J. T. Robinson, ‘‘On Optimistic Methods for Concurrency Control,”” ACM Trans. on
Database Systems 6(2), June 1981, pp. 213-226.

(Lync 83) N. A. Lynch, ‘“Multilevel Atomicity—A New Correctness Criterion for Database Concurrency
Control,”” ACM TODS 8(4), September 1983, pp. 484-502.

(Papa 79) C. H. Papadimitriou, ‘‘The Serializability of Concurrent Database Updates,’” JACM 26(4), October
1979, pp. 150-157.

(Reed 79) D. P. Reed, ‘‘Naming and Synchronization in a Decentralized Computer System,’’ MIT/LCS/TR-
205, Cambridge, MA: MIT, September 1979. '

(Reed 83) D. P. Reed, ‘‘Implementing Atomic Actions on Decentralized Data,”” ACM Transactions on
Computer Systems 1(1), pp. 3-23.

(Rose 79) D. J. Rosenkrantz, R. E. Steamns, & P. M. Lewis II, ‘‘System Level Concurrency Control for
Distributed Data Base Systems,”” ACM TODS 3(2), March 1978, pp. 178-198.

(Silb 80) A. Silberschatz, & Z. Kadem, ‘‘Consistency in Hierarchical Database Systems,”’ JACM, 27(1),
January 1980, pp. 72-80.

(Ster 81) R. E. Stern, & D. J. Rosenkrantz, *‘Distributed Database Concurrency Controls Using Before-
Values,”’ Proc. ACM/SIGMOD Conf. on Management of Data, 1981, pp. 74-83.

(Svob 80) L. Svobodova, ‘‘Management of Object Histories in the Swallow Repository,’” MIT/LCS/TR-243,
Cambridge, MA: MIT, July, 1980.

(Ullm 82) J. D. Ullman, Principles of Database Systems. Rockville, MD: Computer Science Press, 1982.

612

Chapter 13 Database Security, Integrity, and Control

13.2

©® Database security: Protection of the information contained in the database
against unauthorized access, modification, or destruction.

® Database integrity: The mechanism that is applied to ensure that the data in
the-database is correct and consistent. The term semantic integrity is
sometimes used to refer to the need for maintaining database consistency in the
presence of user modifications. Semantic integrity is maintained either implicitly
by the data model, or is specified explicitly by appropriate constraints on the
data that can be entered by the user, and this data is checked by the DBMS.
Entity and referential integrity constraints are implicit in the relational data
model. Set insertion and retention rules are implicit in the network model. A
record occurrence in the network model is restricted to be a member in only one
occurrence of a set type. The requirement that an instance of a child type record
cannot exist without the parent record occurrence is implicit in the hierarchical
model. We discuss integrity issues further in Section 13.4.

® Authorization: The culmination of the administrative policies of the
organization, expressed as a set of rules that can be used to determine which
user has what type of access to which portion of the database. Persons whe are

in charge of specifying the authorization of different portions of the database are
usually called security administrators or autherizers.

Security and Integrity Threats

Some types of threats can only be addressed using social, behavioral, and control
mechanisms such as ethical training, expected conduct by the employees of an or-
ganization, and appropriate legislation. These threats include actions on the part of
authorized users to perform actions such as deliberately adding unauthorized users,
giving some users more access than required for their normal operations, divulging
passwords, and threatening bribery and blackmail. However, in spite of the most
stringent legislation and penalties for transgressions, there will always be lapses in
any system, computerized or not. The intention of the DBMS is to make it unprofit-
able, economically or otherwise, for casual users to breach the security mechanism.

In addition to features required in the DBMS for security and integrity, addi-
tional requirements have to be supported by the operating system and the protocol
for physical access to the computing system itself.

The operating system must ensure that files belonging to the database are not
used directly without proper authorization. This authorization can consist of the user
providing the proper passwords for the file. The operating system must also ensure
that illegal users using public communication facilities are not allowed access to the
system. Users must be required to use adequate. identification and passwords (pass-
words must be sufficiently long and must be changed frequently to thwart intruders
and hackers).

Access to the computing facility and the storage medium must be restricted to
authorized persons only. There must be adequate physical protection, as in the case
of any valuable asset. Disposal of old storage devices must be done in a proper
manner. Any sensitive data resident on storage devices to be disposed of must be
destroyed. T

13.2 Security and Integrity Threats 613

P

In a telecommunications environment, data may be accessed by eavesdroppers,
wiretappers, and other illegal users. To prevent this type of threat, data transmitted
over public communication channels should be in a ciphered form.

We can classify security and integrity threats in the categories of accidental, o
intentional or malicious.

Accidental Security and Integrity Threats

® A user can get access to a portion of the database not normally accessible
that user due to a system error or an error on the part of another user. For
example, if an application programmer accidentally omits appropriate
verification routines, the resulting programs would compromise the database.

® Failures of various forms during normal operation, for example, transaction
processing or storage media loss. Proper recovery procedures are normally
used to recover from failures occurring during transaction processing. Lack of
such procedures could lead to inconsistencies in the database as dlscussed in
Chapter 11.

® Concurrent usage anomalies. Proper synchronization mechanisms are used to
avoid data inconsistencies due to concurrent usage. We discussed these
problems in Chapter 12.

~ ® System error. A dial-in user may be assigned the identity of another dial-in user
i who was disconnected accidentally or who hung up without going through a
log-off procedure.
® Improper authorization. The authorizer can accidentally give improper

authorization to a user, which could lead to database security and/or mtegnty
violations.

® Hardware failures. For example, memory protection hardware that fails could
lead to software errors and culminate in database security and/or integrity
violations.

Malicious or Intentional Security and Integrity Threats

® A computer system operator or system programmer can intentionally bypass the
normal security and integrity mechanisms, alter or destroy the data in the
database, or make unauthorized copies of sensitive data.

® An unauthorized user can get access to a secure terminal or to the password of
an authorized user and compromise the database. Such users could also destroy
the database files.

® _Authorized users could pass on sensitive information under duress or for
personal gain.

® System and application programmers could bypass normal security in their
programs by directly accessmg database files and making changes and copies
for illegal use.

® An unauthorized person could get access to the computer systein, physically or
by using a communications channel, and compromisc the database.

616 Chapter 13 Database Security, Integrity, and Control

and

the structure of the data has to be determined by the DBA (who could also be

designated as owner). Procedures fur modifications to the security control mechanism
must also be enacted.

Access Control Policies

In addition to the administrative procedures, the lower level access control policies
have to be determined in light of the security features provided by the DBMS and

0s.
°

Access control policies can be classified as follows:

Open vs. closed system: In an open system, a user is allowed access to
everything unless access is explicitly denied. In a closed system, a user is not
allowed to access anything unless access is explicitly granted. A closed system
enforces the least privilege or the need-to-know policy; an open system
maximizes sharing of information and minimizes the portion that is not to be
known.

Content-independent access control: This policy is also called name-
dependent access control. Access is allowed to those data objects whose
names are known to the user. A data object can be a relation name and some of
the associated attributes in the case of a relational database. In the case of a
network database, it could be a set with the owner and member record types,
with some of the associated data fields. Thus, access is independent of the
contents of the data object. Consider the relation of Figure 13.1. All the
employees in an organization may have content-independent access to the data
object EMPLOYEE(Employee_Name, Department, Room, Phone_No). The
manager of the Personnel department, however, has content-independent access
to the entire data object EMPLOYEE (Employee_Name, Department, Room,
Phone_N4, Position, Salary).

Content-dependent access control: In this policy the concept of least privilege
can be extended to take into account the contents of the database and result in
finer granularity of access control. The chairperson of a department can have
content-independent access to EMPLOYEE(Employee_Name, Department,
Room, Phone_No) and content-dependent access to EMPLOYEE(Employee_

Figure 13.1 The EMPLOYEE relation.

Employee_Name Department Room Phone_No Position Salary
Smith Comp Sci A632 848-3876 Asst Prof 44500
Clark: Comp Sci A651 848-3874 . Asso Prof 49750
Tumer Chemistry C643 848-2981 Professor 63050
Jamieson Mathematics M728 848-3829 Professor 61430
Bosky Physics P388 848-1286 | AssoProf | 52800
Newton Physics P391 848-1291 Asst Prof 42750
Mann Elect Eng E389 848-8628 Asst Prof 44750

13.3 Defense Mechanisms . 61 7

Figure 13.2 The HEAD relation.

Chairperson Secretary Department
Smith Rolland Comp Sci
Jamieson Evans Mathematics
Bosky Fuhr Physics
Tumer Horngren Chemistry
Mann Messer Elect Eng

Name, Department, Room, Phone_No, Position, Salary), such that the
EMPLOYEE.Department is the department where she is the chairperson. This
can be implemented by a query modification as shown below:

select (Employee_Name, Salary)
from EMPLOYEE
where Department = Comp Sci

The above query can be modified as shown below, assuming that there is a
relation HEAD with attributes (Chairperson, Secretary,Department) as shown in Fig-

ure 13.2.
select (Employee_Name, Salary)
from EMPLOYEE
where Department = (select (Department)

from HEAD
where Chairperson = user’s name)

Access Operation Type-Control Policies

Greater control over the use of data is obtained when the security policy distinguishes
the type of access that is allowed to a data object. The classification of access to a
data object known to the user can be as follows: read, update, insert, delete. Thus,
everyone in an organization may be allowed access to the data object EMPLOYEE
(Employee_Name, Department, Room, Phone_No) with the access type being read.
The departmental secretary may be assigned update access to the EMPLOYEE.Room
and EMPLOYEE.Phone_No data items, and this update access may be content de-
pendent only to occurrences of the secretary’s department. This can be implemented
by a query modification as follows:

update EMPLOYEE
Room = new room
Phone_No = new phone number
where Employee_Name = somename

The above query may be modified as follows to ensure that the departmental
secretary modifies only the tuples for his own department’s employees:

Chapter 13 Database Security, Integrity, and Control

Objects

tains rows called subjects and columns termed objects. The entr
the position corresponding to the intersection of a row and column .
of access that the subject has with respect to the object.

An object is something that needs protection and one of the first steps in the author-

- ization process is to select the objects to be used for security enforcement. A typical

object in a database environment could be a unit of data that needs to be protected.
However, the unit of data could be at some convenient size or granularity. Thus, a
data field, a record, or a file could be considered an object. Another type of object
that can be protected is a view or subscheme. Using views as objects and hence as
units of protection automatically limits the amount of the database that can be ac-
cessed by a user.

The objects in the access matrix represent content-independent access control.
However, to enforce content-dependent access control, some structure for conditions
or access predicates are incorporated in the access matrix. Some examples of access
predicates, expressed as query modifications, are shown in Figure 13.4.

Vuews as Objects

Granularity

Subject

In addition to providing different ways of looking at the data in the database, views
or subschemes can be used to enforce security. A user is allowed access to only that
portion of the database defined by the user’s view. A number of users may share a
view. However, the user may create new views based on the views allowed. The
advantage of this approach is that the number of objects accessible to a class of users
and the entry for it in the authorization matrix is reduced to one per view. This
reduces the size of the authorization matrix. The disadvantage is that the entire class
of users have the same access rights.

The usual practice is to choose the granularity of security enforcement. This could
be a file, a record (relation), or a data item (attribute). The smaller the protected
object, the finer the degree of specifying protection. However,. the finer granularity
increases the size of the authorization matrix and the overhead in enforcing database
security.

A subject is an active element in the security mechanism; it operates on objects. A
subject is a user who is given some rights to access a data object. We can also treat
a class of users or an application program as a subject. A user who belongs to or
joins a class of users gets the access rights of that class of users. If a user belongs to
more than one class of users, then the access rights for a given access made by the

‘user depends on the class of user that is being used by that user for the access.

13.3 Defense Mechanisms 621

Access Types

The access allowed to a user could be for data manipulation or control. The manip-
ulation operations are read, insert, delete, update. The control operations are .add,
drop, alter, and propagate access control. We define these operations below:

® Read: Allows reading only of the object.
e Inmsert: Allows inserting new occurrences of the object type, for example, a

tuple in a relation. Insert access type requires that the subject has a read access
as well. However, an insert access may not allow modification of existing data.

e Delete: Allows deleting an existing occurrence of the object type.

e Update: Allows the subject to change the value of the occurrence of the object.
Some data-items in a record, such as the primary key attributes, however, may
not be modified. For reasons discussed in Section 5.4.1, update through a view
may or may not be allowed. An update authorization may not include a delete
authorization as well.

@ Add: Allows the subject to add new object types such as new relations (in
relational systems), record and set types (in network systems). or record types
and hierarchies (in hierarchical systems).

® Drop: Allows the subject to drop or delete existing object types from the
database. Here we are referring to the deletion of a type and not of an
occurrence.

® Alter: Allows the subject to add new data-items or attributes to an existing
record type or relation; also allows the subject to drop existing data-items or
attributes from existing record types or relations.

® Propagate access control: This is an additional right that determines if this
‘subject is allowed to propagate the right over the object to other subjects. Thus,
a subject S may be assigned an access right R over an object O, and in addition
the right to grant this access right (or part of it) to another subject.

In the access matrix of Figure 13.4, we have indicated both content-independent
access rights and content-dependent access rights; the latter have been indicated with -
query modification clauses. ,

In addition to the above access rights, a subject may have the privilege to create
additional indexes for a record type or relation, execute certain application programs
(another type of object), and so on.

Authorization Grant Tree

Consider a user subject. When the user has the propagate access control right over
an object, he or she can pass all or part of her or his right to another subject, for
instance another user. In a organization that uses the centralized security administra-
tion policy, the authorizer has all the access rights including the propagate access
control right over the database. When the authorizer grants a user some rights this
may be granted with the propggate access control as well. This leads to an authori-
sation grant tree, as shown in Figure 13.5.

To properly revoke access rights, all paths in the access grant tree must start
from the authorizer, otherwise the revocation cannot be guarded from unscrupulous

622 ~ Chapter 13 Database Security, Integrity, and Control

Figure 13.5 Authorization grant tree.

S

g

i

M ON = O T~ P
/\mf\/
N

74
~

usage. With this proviso, revozation of the access rights of subject S; in Figure 13.5
means that subject S, also loses all rights. Subject S retains those rights granted by
S5 and S loses rights granted by Ss. We illustrate this pruned access grant tree in
Figure 13.6.

Further revocation of access right of subject S5 by S, causes S, to lose all access
rights as well; this is illustrated in Figure 13.7.

Without the requirement that a direct path exists from the authorizer, the reader
can verify that Ss, S, and S; would retain their access rights when the authorizer
revokes the access right of subject S, as illustrated in Figure 13.8.

Figure 13.6 Authorization grant tree after revocation of access rights from S;; S, retains the access

right granted by S;.
/ ’
5
/ \ Ss

Ss

MON~= O T~ P>

13.3 Defense Mechanisms 623

Figure 13.7

Authorization grant tree after revocation ot access rights from Ss; S, also loses access

rights.
/)

Sy
A
u
t
h Ss
M
i
z Se
e
r
S3
S,

Authorization Facilities

Figure 13.8

The facility available to the authorizer (and to the users who can propagate access
rights) to assign access rights could be in the form of a separate language or could
be integrated with the data definition or the data manipulation language.

In the network model the access rights specifications are integrated with the data
definition language. The subschema can be used to grant access to a subset of the
database to an user. However, it does not provide a facility to indicate the operations
that a user can perform on the portion of the database accessible to the user.

Authorization grant tree with access rights that cannot be properly revoked.

)

" sl

—e——> 5y

v N O T~ D

-

()
/
N\

S

53

Chapter 13 Database Security, Integrity, and Control

be designed to require the user to provide a password before allowing a sensitive '
operation.

Instead of a simple password, the system may ask the user one or more ques-
tions from a set of questions; only the user can correctly answer these questions. One
such scheme involves generating a pseudorandom number X and prompting the user
to respond with T(X), where T is a prearranged simple transformation function. Since
only the user and the system know what this prearranged transformation T is, anyone
eavesdropping will only see X and T(X) and cannot easily discern T. Each authorized
user in this method of authentication is supplied with unique transformation function.

Something in the User's Possession

In this scheme, each user could be given an appropriately encoded badge, card, or
key to be used for identification purposes. A password or question-answering scheme
as before can be used for the authentication purpose.

Some Characteristic of the User

13.3.4

In this scheme, the identification and authentication procedures are combined in one
step, but require the use of special hardware and software to identify some physical
or physiological characteristic of the user. These characteristics are known to be
unique or have a very low probability of duplication in a population of a given size,
and hence cannot be easily faked. Examples of such characteristics are fingerprints
or the relative lengths of the fingers of a hand. Another scheme that has been pro-
posed is the use of voiceprint; however, a simple technique like using a tape record-
ing of the authorized user’s voice can be used to impersonate the user.

Views/Subschemes in Security Enforcement

The-content of the database is described by the conceptual scheme and the users’
views are defined by the subschemes. The subscheme can be used in the name-
dependent security enforcement policy to limit the portion of the database known to
and hence accessible by a user. The network model as proposed in the DBTG uses
the subschema as the major security enforcement mechanism. A user is not allowed
access to anything that is not included in that user’s subschema.

The following example illustrate creating a view for use by the departmental
secretary consisting of the attributes Employee_Name, Room, and Phone_No. The
tuples accessible are limited to the employees in the secretary’s department.

create view EMP_ADDRESS (Name,Room_No, Phone) as
(select (c.Employee_Name,e.Room, e.Phone_No)
from EMPLOYEE e
where ¢.Department = (select (Department)
from HEAD
where Secretary = ‘secretary_name’))

13.3 . Defense Mechanisms 627

13.3.5

Having created this view, the secretary is granted appropriate access rights to
any tuple of this relation and is allowed to update Room_No, Phone by means o
following grant statement: of

grant select update (Room_No, Phone) on table EMP_ADDRES
‘secretary_name’

Distributed Systems

13.3.6

Security enforcement in distributed systems can be enhanced by distribution. Sensi-

_tive information can be fragmented and stored at dispersed sites. The leakage of some

portion of the fragmented data may be not as disastrous as the leakage of unfrag-
mented data. Also, with distribution, different sites can have different levels of se-
curity. However, in this case, the more secure sites have to take into account the
existence of less secure sites in transmitting data over the network. Since data will
be transmitted over a communication channel, appropriate encryption schemes (dis-
cussed in Section 13.3.6) should be used.

The authorization functions in a distributed system have to be decentralized and
a decision has to be made as to where to store the access matrix or access rules. One
possible choice is to fragment the access matrix and store the appropriate fragments
at the sites of the data fragments.

Cryptography and Encryption

Consider the secure transmission of this message:
*‘Mr. Watson, can you please come here.’

One method of transmitting this message is to substitute a different character of
the alphabet for each character in the message. If we ignore the space between words
and the punctuation, and if the substitution is made by shifting each character by a
different random amount, then the above message can be transfo.med into, e.g., the
following string of characters:

**xhilkunsikevoabondwinhwoajahf."’

Cryptography has been practiced since the days of the Roman Empire. With the
increasing use of public communication facilities to transmit data, there is an in-
creased need to make such transmissions secure. In a distributed environment, trans-
mitting highly confidential information between geographically dispersed sites, in
spite of the most stringent local security enforcement, could lead to leakage from
eavesdropping and wiretapping.

This points to the need for the data to be encrypted before it is transmitted. At
the receiving end, the received data is deciphered before it is used. The sender must
know how to encrypt the data and the receiver must know how to decipher the coded
message. Since the computers at both ends can be used to cipher and decipher the
data, the code used for ciphering can be quite complex.

Chapter 13 'Database Security, Integrity, and Control

13.4.1

In this section we consider some types of constraints that the database has to
enforce to maintain the consistency and validity of data. One aspect that has to be
dealt with by the integrity subsystem is to ensure that only valid values can be as-
signed to each data-item. This is referred to as domain integrity. Another set of
integrity constraints are the so-called structural and semantic constraints. Some of
these types of constraints are addressed by the data models used and others are ad-
dressed in the design of the database by combining appropriate functional depend-
encies in different records. Some if not most of the functional dependencies can be
expressed if the DBMS allows each record type or relation to have an associated
primary key. We discuss these aspects below.

In traditional systems, application programs were responsible for the validation
of data and maintaining the consistency of the data used by the programs. However,
in a DBMS environment, depending on the application programs to perform these
checks has the following drawbacks:

® Each application program must have correct validation and consistency check
routines; a failure in one program could lead to database inconsistencies.

® Each application program must be aware of the semantics of the complete
database to enforce the correct consistency checks; this is not always the case
and unnecessarily burdens the application program writers.

® There will be considerable duplication of efforts.

® Integrity constraints are hard to understand when they are buried in the code of
application programs.

® No consistency or validity checks are possible for direct database manipulation
using a query language.

Centralizing the integrity checking directly under the DBMS reduces duplication
and ensures the consistency and validity of the database. The centralized integrity
constraints can be maintained in a system catalog (data dictionary) and can be acces-
sible to the database users via the query language. This does not rule out an appli-
cation program performing some specific checking, including input validation.

Domain or Data-ltem Value Integrity Rules

One of the most common integrity constraints that 1s specitied and validated is to
define the domain for each attribute, or in the case of network or hierarchical models,
to define the value set for each data-item. Domain integrity rules are simply the
definition of the domains of the attributes or the value set for the data-items. The
value that each attribute or data-item can be assigned is expressed as being one or
more of the following forms: a data type, e.g., alphanumeric string or numeric; a
range of values; or a value from a specified set. For instance, in the relation EM-
PLOYEE of Figure 13.1, the domain of the attribute Salary may be given as being
between $12,000 and $300,000. The final Grade assigned to a student in a course
can only be one of, say, A, B, C, D, or F.

A domain can be composite; for instance, the Date attribute in the relation
MED_HISTORY is restricted to the form mm/dd/year, where mm is the month and
is restricted to the range 01 through 12; dd is the date and is restricted to the range

13.4 Integrity 631

01 through 31; and year is, say, 1986 through 2000. We can make the range of dd
more precise by taking into account both the month and year.

Since online data entry is a common operation, validation of the entered values
has to be performed to maintain the integrity of data. Traditionally the validation was
performed by application programs. However, this approach has two drawbacks:
first, it depends on the application programmer to include all validity checks, and
second, each application program is duplicating some of these checks. Hence, it is
preferable to centralize these operations and let the DBMS perform the validity
checks. Note that some types of errors cannot be detected. For instance, a professor
may incorrectly assign a grade of F instead of D to a student (an accidental error
perhaps, because the keys for D and F are next to each other on the QWERTY
keyboard). The validation procedure cannot detect this as an error, since F is a valid
grade. Thus, integrity mechanisms can only ensure that the data is 1n the specified
domain. Incorrect choices, as long as they do not violate any integrity constraints,
are not considered to be errors.

Some domain constraints could be conditional. For example, the salary con-
straint in the EMPLOYEE relation, instead of being restricted to a given range could
be restricted conditionally as follows: ‘

if Position is Asst. Prof Salary must be between 35,000 and 45,000
" if Position is Asso. Prof Salary must be between 42,000 and 55,000
if Position is Professor Salary. must be between 53,000 and 200,000

The domain values supplied for an operation are validated against the domain
constraints. Any violation of a domain integrity rule typically results in the operation
being rejected with an appropriate message returned to the user for the correct value.
Other possible choices of action to be undertaken by the DBMS on the detection of
a domain constraint violation are: correct the value to a valid value; replace the value
with a sentinel value that will be detected at audit time; roll back the transaction that
issued the invalid value.

The validation procedure typically runs after each attempted modification; how-
ever, some integrity constraints may be validated only after the completion of a
transaction. Consider the total quantities of some part in a plant. This value must not
change unless there is a shipment or receipt of that part. If a transaction.transfers
100 units of the part from inventory to a project in the plant, the total units of that
part will be incorrect after the first operation of the transaction, which subtracts 100
units from the quantity on hand in inventory, and before the end of the second op-
eration of the transaction, which adds 100 units to a project. The database is in an
inconsistent state if the total for the part being transferred were to be computed after
the first operation was completed.

In specifying the domain constraints, null values may or may not be allowed
Thus, it is usual not to allow null values for any attribute that forms part of a primary
key of a relation.

The definition of the EMPLOYEE relation of Figure 13.1 can be given as shown
below, where some of the domain constraints are included. The attribute Employee_.
Name is declared as a primary key that must not be null.

type EMPLOYEE = relation
Employee_Name alphabetic string length 25 unique null not allowed
Department alphabetic string length 15 values (CompSci, Chemistrv. Elec-
trical Engineering, Mathematics, Physics, . . .)

Chapter 13 Database Security, Integrity, and Control

13.4.3

13.4.4

Violation of Integrity Constraints and Corrective Action

As mentioned earlier, the validation of the database can be done right after the com-
pletion of a single request to the database; at some point within a transaction, includ-
ing at the end of a transaction; or at some time specified by the DBA or a database
auditor (the latter may be called the audit time).

If the validation is done after each request to the database, a message can be
returned to the user or application program indicating the problem, and the request
will fail. If the validation checks are performed at some point within a transaction
(including just before it is committed), there is a requirement to perform a mainte-
nance operation in case of integrity violation. This would involve terminating the
transaction and undoing any changes made by the transaction.

If the validation checks are done at audit time, it becomes difficult to assign the
integrity violation to a single database request or a single transaction. An audit trail
could be helpful in pinpointing the culprit; however, comrective actions have to be
performed on transactions that were processed from the time of the integrity viola-
tion.

A General Model of Integrity

A general integrity constraint can be specified using a model that gives the tollowing
parameter for each constraint:

® D: The data object(s) to which the constraint applies.

® 0O The database operation for which the constraint will be tested.

® A: The assertion or semantic constraint that must be satisfied by the occurrence
of the data object(s).

® C: Predicates to be applied to the data object. The predicates select those
occurrences of the data object to which the assertion A will be applied. If
the condition holds for a given occurrence of D, it is a candidate for the con-
straint A.

® P: The procedure (sometimes called an auxiliary procedure) that will be
triggered for execution when an integrity violation is found to be true (if the
condition A is not true). The auxiliary procedure must take corrective action to
maintain integrity.

Using this model, each constraint can be expressed as a five-tuple: (D, O, A, C, P).

The auxiliary procedure P in the above model is said to be triggered when a
modification to the database causes an integrity violation, i.e., the constraint A does
not hold. The procedure is responsible for taking corrective actions.

One type of operation that the auxiliary procedure can be called to take is to
check some complex integrity requirements that cannot be specified by assertions. A
method of triggering such a procedure would be by setting the assertion A to false
and the condition C to true in the constraint rule. In addition, such an auxiliary
procedure could be called to prepare appropriate audit trails, and so forth.

L 4

-13.4° Integrity 635

It has been proposed that an integrity mechanism called trigger be included in
the new standard for SQL. A trigger is defined as follows

define trigger trigger_name
on relation names
predicate(s)

action auxiliary procedure

We give below an example of trigger definition where the salary of employees
is checked on insertion or update:

define trigger salary_validation

on relation EMPLOYEE

EMPLOYEE.Salary > 10000 and Employee.Salary < 200000
action Notify_Personnel_Manager

13.4.5 Expressing Integrity Constraints

Most DBMSs have some form of language constructs for expressing domain and key
constraints. These constructs could be part of the data definition language, the data
manipulation language, or a special language. However, the constructs for expressing
complex constraints are only in the evolution stage. We gave a form for checking a
general constraint in Section 13.4.4 and the define trigger statement proposed for
SQL.

Since the DBMS is representing a given data model, it is aware of some of the
integrity constraints implicitly built into the data model. It is infoimed of the record
structure and other implicit integrity constraints by the declaration in the data defini-
tion language. For instance, in a hierarchical system the declaration of a record type
gives its structure; in addition, some data fields may be declared as unique to specify
a primary key of the record type. The hierarchies with the parent and dependent
record type gives the relationship between record types. Additional rules, as men-
tioned in Chapter 9, may be specified which could result in the creation of logical or
virtual parents and enforce appropriate referential integrity constraints and semantic
consistencies.

The network data definition facility allows the definition of a primary key (by
not allowing duplicates). The check clause in the data definition can be associated
with each data-item that specifies the valid values or data type. The insertion and
retention rules for sets define the semantics and referential integrity of the indepen-
dent existence of the member record type occurrence vis-a-vis the owner record oc-
currence. The check clause is also used to specify other arbitrary constraints, and it
may be formulated to enforce constraints between distinct record types, stipulating
operations that will trigger the execution of an associated auxiliary procedure.

Relational data definition language also provides statements to allow specifica-
tion of constraints. The assert statement is one such statement. The assert indicates
that a constraint is specified involving relations in the on clause. The assertion to be
enforced is given by predicates following the list of relations. However, current re-
lational languages and DBMSs support such a statement only partially.

Chapter 13 Database Security, Integrity, and Control -

integrity constraints.should be enforced for all update operations. Finaily. appropriate
audit trails should be generated.

Summary

Security and integrity concepts are crucial since modifications in a database require
the replacement of the old values, but the fact that there was an old value for a given
data item is not evident. The DBMS security mechanism restricts users to only those
pieces of data that are required for the functions they perform. Security mechanisms
restrict the type of actions that these users can perform on the data that is accessible
to them. The data must be protected from accidental or intentional (malicious) cor-
ruption or destruction. In addition there is a privacy dimension to data security and
integrity.

Four levels of defense are generally recognized for database security: human
factors, administrative coatrols, physical security, and the security and integrity
mechanisms built into the operating system and the DBMS. Access control policies
are classified as opei. vs. closed systems, content-independent access control, con-
tent-dependent access control, access operation type control, access context control,
access control based on history of accesses, and information flow. policies. The da-
tabase depends on protection mechanisms such as user identification and validation
as well as the memory and file protection features of the OS.

Authorization is the outcome of the administrative policies and is expressed as
a set of rules that can be used to determine which user has what type of access to
which portion of the database. The person who is in charge of specifying the author-
ization is called the authorizer. The authorization is usually maintained in the form
of an access matrix, containing rows called the subjects and columns called the ob-
jects. An object is something that needs protection. The entry in the matrix at the
position corresponding to the intersection of a row and column indicate the type of
access that the subject has with respect to the object. Views or subschemes can be
used to enforce security. A user is allowed access only to that portion of the database
that is defined by the user’s view. A user may be granted some rights with the
propagate access control, which leads to the existence of an authorization grant tree.
To revoke access rights, all paths in the grant tree must start from the authorizer,
otherwise the revocation cannot be guarded against unscrupulous usage.

The facility available to the authorizer (and to the users who can propagate
access rights) to assign access rights could be in the form of a-separate ‘anguage o
could be intggrated with the data definition or data manipulation language.

The user has to identify herself/himself to the system and authenticate the iden-
tification. Security enforcement in distributed systems can be enhanced by distribu-
tion; thus, sensitive information can be fragmented and stored at dispersed sites.

With the increasing-use of public communication facilities to transmit informa-
tion, there is a need for the data to be encrypted before it is transmitted and this
requires that, at the receiving\end, the received data be deciphered. A public key
encryption scheme can be used. In this scheme both the encryption key and the
encryption algorithm are public and readily ‘available. However, the decryption key
is secret; only the rightful recipient can decipher the coded message.

Security constraints guard against accidental or malicious tamipering with data;

13.7 Summary 641

integrity constraints ensure that any properly authorized access, alteration, deletion,
or insertion of the data in the database does not change the consistency and validity
of the data. Database integrity involves the correctness of data and this correctness
has to be preserved in the presence of concurrent operations, errors in the user’s
operations and application programs, and failures in hardware and software. One
aspect to be dealt with by the integrity subsystem is to ensure that only valid values
can be assigned to each data-item; this is referred to as domain integrity. Another set
of integrity constraints are the so-called structural and semantic constraints. Some of
these types of constraints are addressed by the data models and others are addressed
in the design of the database by combining appropriate functional dependencies in
differ nt, records. Many functional dependencies can be implicitly represented in a

vdatab that allows the declaration of some attributes as a primary key. Most DBMS
‘have some form of language constructs for expressing integrity constraints.

privacy

In a statistical database the objective is to maximize sharing statistical informa-
tion and yet preserve privacy of individual records. This security problem cannot be
solved by normal access control strategy, since the aim of the database is to allow
all users full access to the data. The means to prevent compromising a statistical
database is to reject queries if the number of intersection records with previous quer-
ies made by the user is very large (or very small). If random falsification is used to
protect confidentiality, it is statistically insignificant, so that normal users will not
suffer from erroneous statistics. The maintenance of audit trails could discourage
unscrupulous snooping.

The auditing process is also relevant in nonstatistical databases to; verify if the
automated operations are properly implemented and executed.

name-dependent access control one-time code

database security content-dependent access Data Encryption Standard
database integrity control (DES)

semantic integrity access type control trapdoor functions
authorization access context control public key

security administrator access matrix domain integrity
authorizer subject implicit constraint
open system object referential integrity
closed system propagate access control auxiliary procedure
least privilege authorization grant tree trigger

need to know password _ assert

maximize sharing identification on clause
content-independent access -authentication statistical database
~ control Caesar code

13.1

Consider a case of computer-related fraud you are familiar with (or consult one of the
referenccs cited in the bibliographic notes). List the security and integrity constraints that

Chapter

14

Ccntents

14.1
14.2
14.3

14.4
14.5
14.6

14.7
14.8

The Organization and its Information System
Phase I: Definition of the Problem

Phase 1i: Analysis of Existing System and
Procedures

Phase I1i: Preliminary Design

Phase 1vV: Computing System Decision

Phase V: Final Design o

14.6.1 Designing the Conceptual Database—Relationa
DBMS

146.2 Designing the Conceptual Database—Network DBMS

14.6.3 Designing the Conceptual Database—Hierarchical
DBMS

14.6.4 Designing the Physical Database
Phase Vi: Implementation and Testing

Phase Vii: Operation and Tuning

14.2 Phase I: Definition of the Problem 6435

Database design is an iterative process. A number of design methodologies have been
developed.This chapter offers an informal discussion of the steps involved in design-
ing a database.

The Organization and Its Information System

14.2

The information system of an organization consists of a number of subsystems in-
volved in the collection, dissemination, and management of information. Some of
these subsystems are manual, others are automated. A database system consisting of
the data, DBMS software, hardware, and personael is a component of such an infor-
mation system.

Deciding to use a database system requires studying the organization and its
needs. In the case of a small organization with few users, where the volume of data
is small and there is no need for online query or update, a database system may not
be necessary. In an organization with a large volume of data that changes rapidly,
where there is a need for interactive queries and modifications, with a'large number
of users, and where decision making is distributed, the need for concurrent access to

.shared data is addressed by a database system.

In an organization where a large number of users and applications exist, the
database system provides data independence, insulating these users and applications
from changes. For the database to meets its objectives, its design must be complete
and consistent. All the significant inputs should be used in the design process, in-
cluding the inputs of the users. The external schema allows multiple views of the
data contained in the database. Designing a database system requires gathering details
about the applications and transactions that are to be supported and the classes of
users that will use the system.

Figure 14.1 gives the system cycle for the design of a database system. I starts
off with the definition of the problem and goes through a number of steps, culminat-
ing in the installation and operation of the system. In the following sections we
examine the activities performed in each phase of this cycle.

Phase I: Definition of the Problem

The first step in the system cycle is the rough outline and scope of the project.
Alternatives are examined and one of the alternatives is targeted for a feasibility
study. Estimates of the costs, including initial setup and operational costs, and the
risks versus the benefits are examined. The initiel cost consists of acquiring the soft-
ware and the hardware, converting from a manual or file-based system, and training
the personnel. Time scales for the various stages of the development cycle are esti-
mated. Approval of top management for a go-ahead is required

Once it is decided that the organization wants to pursue the database solution
for its information needs, the design of the database system begins.

Chapter 14 Database Design

14.4

® Meetings with user groups: One or more key users from each user group is
invited to provide input in determining the data and processing needs for the
group. A formal interview may be supplemented by a questionnaire.

® Analysis of the procedures and information flow: The information gathered is
analyzed for consistency and problem areas are targeted for further study.

® Modifications to improve efficiency: Modification in the current procedures
that could improve efficiency may be discovered. Such modifications have to be
discussed with the groups concemed to elicit their cooperation.

® Preparing the initial proposal and requirement specifications: The initial
proposal is prepared and may be discussed with the user group for any
omissions and corrections made to the proposed requirements.

The output of this phase is:
Data requirements
Properties and interrelationships of the data
Operation requirements
Significant events and the operations and cenditions causing transitions
Constraints

The application programs and transactions are designed at this stage of the de-
sign process. The structure of the programs, their functions, and data needs (read
and write sets) are determined, and the user interface is defined.

Phase lli: Preliminary Design

A preliminary design of the proposed system is derived in the next step. This design
is evaluated against the initial requirements. Thg users are consulted and required
changes are made to the design.

The cycle of the steps consisting of the definition of -the problem, procedure
analysis, and preliminary design is repeated until a satisfactory design is obtained.

The design of the conceptual schema is initially DBMS independent and allows
a better understanding of the information requirements and their interrelationships. It
describes the contents of the database without reference to its implementation. It can
be understood by the nonspecialist and can be used in documenting the proposed
database. A data model such as the E-R model may be used for its graphical nature,
simplicity, and expressiveness.

The requirement specifications would have established the entities and the rela-
tionships among them, as well as their attributes. The primary key of the entities,
the cardinality of the relationship, and constraints are to be specified in the concep-
tual schema design. o

Structure constraints such as normal forms for relations have to be enforced by
the design. Two approaches to the design of the conceptual schema may be taken:
centralized schema design or a view-integration approach. In the former, the re-
quirement specifications for each class of users are merged into a single set of spec-
ifications. The conceptual schema is designed from this single set. Any conflicts that
may exist in the individual requirement specifications ‘are to be arbitrated by the

14.5 Phase IV: Computing System Decision 649

DBA. After designing the conceptual schema, the views of the user classes are de-
fined.

In the view-integration approach, the requirement specifications for each class
o1 users form the basis for designing their views. These views are then integrated
imwo the conceptual schema for the database. Conflicts such as synonyms and hom-
onyms are easy to resolve. Conflicts that cannot be resolved by a conceptual schema
to view mapping have to be arbitrated. An instance of such a conflict is where one
application uses a locally generated sequential employee number and another may
use the social security number, conflict in which one application views an attribute
such as Length as meters and another interprets it as yards may be easier to resolve.

Once such conflicts are resolved the views are appropriately integrated. The
integration could be stepwise, where we start by integrating two similar views. Sub-
sequently, at each step, an additional view is merged into the integrated conceptual
schema. After the conceptual schema is defined, the individual views are defined.

in the top-down approach to conceptual schema design we start with the major
entities of interest, their attributes, and their relationships for the database applica-
tion. We add other attributes and may decide to split up the entities into a number of
specialized entities and add the relationships among these specialized entities.

In the bottom-up approach, we start with a set of attributes. We group these
attributes into entities and relationships among them. We also attempt to find higher
level entities to generalize these entities and locate relationships at this higher level.

The processing requirements in the form of applications and transactions are
designed and their response requirements are estimated. To determine the perfor-
mance requirements, the data items to be read and written out (read and write sets)
for each operation in the transaction or application have to be determined. This is
used to derive the nymber and size of input/output for each transaction and applica-
tion. The performance requirements for the system will influence the distribution of
files on physical devices, the physical file structure, and the need for indexes.

Phase IV: Computing System Decision

This decision may be based on the existing environment. If the database is to be
implemented on an existing computer system, the choice is limited to that for the
DBMS. The existing system must be able to meet the storage and processing needs
of the proposed DBMS. DBMSs are usually chosen from one of the commercial
systems because of the cost of developing an in-house system. Features provided by
different systems are also important. Some that should be considered are report gen-
eration facilities, utilities such as menu and form-based user interfacc, features to
support distribution of the database, communication facilities, and the like. Other
considerations such as the expertise of the personnel and their preferences also come
into play
The structure of the data dictates the data model of the database. If the data i:

mainly hierarchical, the hierararchical model and a hierarchical DBMS may be ap-
propriate. If the data exhibits a large number of mterrelatnonshlps, the network or
relational model would be preferable. Deciding on a model also narrows the choice
of commercial DBMSs. Other factors that can influence the choice of a DBMS are

Chapter 14 Database Design

the experience of the personnel, reputation of the vendor, and the availability of
services from the vendor. Selecting the DBMS also dictates the data model.

New applications are increasingly implemented on relational DBMSs and non-
relational DBMSs are retrofitted with a relational interface. The current trend for the
same DBMS being able to run on different CPUs under different OSs allows some
degree of independence between the choice of a DBMS and that of a computer
system.

If the database is to be implemented on an existing system. it must be able to
meet the processing requirements for the foreseeable features.

Factors that have to be considered in the choice of the computing system are
capital costs, conversion and initial training costs, operating costs including those for
personnel, and maintenance of the hardware and software.

Phase V: Final Designh

14.6.1

The preliminary design of the database in Phase Il is in database-independent
form, for instance, using the E-R model. Once the DBMS is chosen, the (DBMS-
independent) conceptual scheme is translated into the DBMS specific conceptual
scheme and the views of the applications are derived from it as externai views. The
schemes are generated as programs in the DDL of the target DBMS.

The first step is to convert the conceptual and external schemes in the model of
the database. We discussed the method of converting a design from the E-R model
to one of the relational, network, or hierarchical models in Section 2.9. These con-
versions rules are summarized in Figure 14.2.

Designing the Conceptual Database—Relational DBMS

It is apparent from Figure 14.2 that converting the preliminary design in the E-R
model to a relational model is a trivial task. An entity type is represented as a rela-
tion. A weak entity type is represented as a relation that includes the key of the
identifying strong entity. A relationship is also represented as a relation and includes
the primary keys of the entities involved ‘in the relationship. In the case of a 1N
relationship, if it does not involve any attributes and if the entity on the *‘N side’’
does not participate in any other relationships, the 1:N relationship can be repre-
sented by appending the primary key of the ‘‘l side’’ to the relation for the ‘N
side.”’ It is also possible to merge these two relations into one if performance require-
ments are not compromised.

An IS_A relationship representing a generalization-specialization hierarchy (su-
perclass/subclass relationship) in the E-R diagram may be represented as a set of
relations. Here a relation is created for the superclass entity and its key is used as a
foreign key in each of the relations corresponding to the subclass entities. Another
option is to have the subclass entities inherit the attributes of the superclass entity.
(These options were illustrated in Figures 2.28 and 2.30, respectively.) In a third
option, a single relation is created that includes the attributes of the entities at all
levels of the generalization-specialization hierarchy. In this case null values are used

